
J
H
E
P
0
2
(
2
0
0
6
)
0
2
9

Published by Institute of Physics Publishing for SISSA

Received: November 8, 2005

Accepted: January 25, 2006

Published: February 14, 2006

Chern-Simons and winding number in a tachyonic

electroweak transition

Meindert van der Meulen

Institute for Theoretical Physics, University of Amsterdam

Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

E-mail: mmeulen@science.uva.nl
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1. Introduction

Baryogenesis, the creation of the baryon asymmetry in the universe, is a long standing

problem in cosmology. It dates back to 1967, when Sakharov suggested that the baryon

asymmetry is not an initial condition of the universe, but might be created later in a

process based on particle physics [1]. This idea has gained support from the inflationary

scenario, since inflation is supposed to have diluted any pre-existing asymmetry. Sakharov

formulated his well-known conditions for baryogenesis: baryon number conservation, C,

and CP must be violated, and a state of non-equilibrium must prevail.
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Of the many particle physics scenarios that have been proposed in the past decades im-

plementing such a process, electroweak baryogenesis [2 – 4] is interesting in that it suggested

the possibility to explain the baryon asymmetry using mostly Standard Model physics. In

this scenario the baryon number violation is caused by the anomaly that relates a change

in baryon number B to a change in Chern-Simons number NCS of the electroweak gauge

fields:

∆B = 3〈∆NCS〉. (1.1)

Furthermore the Standard Model violates C, it has a CP violating phase in the CKM quark

mixing matrix, and the out-of-equilibrium conditions can be provided by an electroweak

phase transition. This phase transition was supposed to be caused by the lowering temper-

ature of the universe, and to be sufficiently out of equilibrium it had to be of first order.

However subsequent work has shown that for the experimentally allowed range of the Higgs

mass, the electroweak phase transition is only a crossover (see e.g. [5]). It is widely be-

lieved that a crossover transition is too close to equilibrium for creation of the asymmetry.

Furthermore, the CKM CP violation has been found to be much too small [6 – 8].

A few years ago, new scenarios were proposed [9, 10], in which electroweak baryogenesis

takes place during a tachyonic transition. In such a transition the effective mass term in

the Higgs potential starts being positive, and can change sign due to the coupling to an

inflaton field, as in hybrid inflation [11]. The accompanying instability can lead to strongly

out-of-equilibrium conditions with large occupation numbers in the Higgs and gauge fields,

during which the energy in the Higgs field is transferred to the other fields by wave-like

‘rescattering’. The process is called tachyonic preheating [12]. During the transition there

can be substantial changes in the Chern-Simons number, and also the baryon number via

the anomaly equation (1.1). The universe was assumed to be cold after electroweak-scale

inflation, so initially the transition takes place at practically zero temperature.

In subsequent papers the scenario was further refined and tested. Considerations of

quantum corrections led to a change of model to inverted hybrid inflation [13], in which the

inflaton rolls away from the origin instead of towards it. In [14] it was shown how WMAP

data constrain the parameters of a model and it was noted that it might be falsified by

the LHC. The transition was studied by analytic and numerical methods [15 – 19], and the

magnitude of the asymmetry generated by a form of CP violation was computed in [16, 19].

The CP violating term in the Lagrangian that was used in [19] does not occur in the

Standard Model. Of course, one is also interested in the CP violation from the CKM

matrix. As mentioned above, this CP violation has been estimated to be much too small

for baryogenesis [6 – 8], but these estimates do not seem to apply to a tachyonic transition

at zero temperature. In fact, it has been suggested [20] that the effect might be much

larger in this case. It is therefore important to make sure whether the CP violation of the

Standard Model is sufficient to produce the baryon asymmetry.

Trying to investigate this problem by numerical simulation with three generations

of fermions is a practically impossible task. Instead we have in mind a more tractable

approach: if the changes of NCS occur in a certain type of local field configuration, we

could estimate the produced asymmetry by simulating only this local configuration. There

– 2 –
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is reason to believe that the change of NCS indeed occurs in local configurations: in [18]

evidence is found for local structures in numerical simulations, and in [10, 13] it is suggested

that topological defects called textures play a role in this process. The presence of a texture

depends on the winding number of the Higgs field Nw. In the vacuum NCS = Nw. A texture

is a configuration which has winding number different from the Chern-Simons number. It

is unstable and can decay either by changing the winding number or the Chern-Simons

number. In [21, 22] a scenario for electroweak baryogenesis is investigated in which the

change of Chern-Simons number occurs during the decays of textures. The textures were

supposed to be formed directly after a first order electroweak phase transition, and the

produced asymmetry was estimated by simulating a single texture and its decays. Such

an approach was investigated further in ref. [23], where it was concluded that it is unlikely

to be successful and that the asymmetry depends on too many variables to bypass a fully-

fledged numerical simulation. We believe this conclusion is not so clear cut and consider it

worthwhile to understand more fully the mechanism that changes Chern-Simons numbers

in tachyonic transitions.

In this paper we study the production of winding and Chern-Simons number in a

tachyonic transition. We shall argue that instead of textures, related configurations with

half-integer winding number are important. We call such configurations half-knots.1 These

typically occur in regions where the Higgs magnitude has a small minimum. They can be

stabilized when the Chern-Simons number density adjusts to the winding number density

and the Higgs field relaxes towards its ground state, leaving a blob-like half-knot both

in winding number and in Chern-Simons number. Half-knots have a rather high winding

number density in their center and can be visualized in numerical simulations. We present

some examples in detail.

In section 2 we review the Chern-Simons number, winding number and winding con-

figurations in this model. Next we turn to the tachyonic transition and discuss our ex-

pectations with respect to the half-knots in this transition, in section 3. In section 4 we

present the results of the numerical simulations, and we discuss the results in section 5.

2. Winding in the SU(2) Higgs model

In this section we review some topological features of the SU(2) Higgs model, since it is the

part of the Standard Model that plays a dominant role in the tachyonic transition. First

we introduce the model and define the Higgs winding number and the Chern-Simons num-

ber. Then we discuss topological defects that may play a role in the transition: textures,

sphalerons and half-knots.

2.1 SU(2) Higgs model

The action is given by

S = −
∫

d4x

[

1

2g2
TrFµνFµν +

1

2
Tr

[

(DµΦ)† DµΦ
]

+ λ

(

1

2
Tr

[

Φ†Φ
]

− v2

2

)2
]

, (2.1)

1The word half-knot appeared earlier in [24].
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where the field strength is Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ], the vector potential can be

written as Aµ = Aa
µτa/2, and the covariant derivative acting on the Higgs field is DµΦ =

(∂µ − iAµ)Φ. We use a metric with signature (-1,1,1,1) and for the Higgs field we use the

matrix notation:

Φ =

(

ϕ∗
d ϕu

−ϕ∗
u ϕd

)

=
ρ√
2

Ω, ρ2 = 2(ϕ∗
uϕu + ϕ∗

dϕd), Ω(x) ∈ SU(2). (2.2)

We call ρ the Higgs length. The Higgs and W masses are given by mH =
√

2λ v and

mW = gv/2, we also use the notation

µ =
√

λv2. (2.3)

As part of an extended theory, the mass term −λv2 1
2 Tr Φ†Φ is to be replaced by an

effective mass term

µ2
eff

1

2
Tr Φ†Φ, (2.4)

where µ2
eff depends on time through the coupling to another field (inflaton). Initially it is

positive, and when it changes to negative the tachyonic transition starts. Eventually µ2
eff

will relax to the Standard Model value

µ2
eff → −λv2 = −µ2. (2.5)

The rate of change of µeff depends on further details of the theory.

Throughout this paper we we use the so-called ‘temporal gauge’ A0 = 0, which still

leaves the freedom to do time-independent gauge transformations.

2.2 Topology in the SU(2) Higgs model

The non-conservation of baryon number in the Standard Model follows from the anomaly

in the divergence of the baryon current,

∂µjµ
B = 3 q, (2.6)

q =
1

32π2
εκλµνTrFκλFµν = ∂µjµ

CS. (2.7)

Here 3 is the number of generations and jµ
CS is the Chern-Simons current; q is sometimes

called the topological charge density, since, for classical fields, and in euclidean space-

time, its integral over a four-dimensional manifold without boundary is an integer, the

topological charge. Taking the expectation value of (2.6) in the initial (Heisenberg) state

and integrating between (real) times 0 and t gives

B(t) − B(0) =

∫ t

0
dx0

∫

d3x 〈3q〉 = 3〈NCS(t) − NCS(0)〉, (2.8)

with B = 〈
∫

d3xJ0
B〉 the baryon number and

NCS =

∫

d3x j0
CS, j0

CS = − 1

16π2
εjklTr

[

Aj

(

Fkl + i
2

3
AkAl

)]

, (2.9)
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the Chern-Simons number operator. We assumed that
∫

d3x ∂k〈jk
CS〉 vanishes, e.g. in a

model with periodic boundary conditions, or because the fields vanish sufficiently fast at

spatial infinity.

At this stage the Chern-Simons number and current are still operators, whereas the

baryon number B is a c-number in the way we have written it. In the following we shall

make a classical approximation (see section 3), and therefore we assume from now on that

all fields are classical. Note that NCS(t) and NCS(t)−NCS(0) are generically not integers.

The winding number of the Higgs field is given by

Nw =

∫

d3xnw, (2.10)

nw =
1

24π2
εijkTr

[

∂iΩΩ−1∂jΩΩ−1∂kΩΩ−1
]

, (2.11)

where Ω is given implicitly by (2.2); this is a valid definition as long as ρ 6= 0 everywhere.

Classical vacuum configurations are given by

Φ =
v√
2

Ω, Aj = −i∂jΩΩ−1, Ω ∈ SU(2). (2.12)

Here Ω is arbitrary. It is easy to check that in the vacuum (2.12) the winding number

density nw equals the Chern-Simons number density j0
CS.

The winding number (2.10) and Chern-Simons number (2.9) are not gauge-invariant;

they change by an integer under so-called large gauge transformations. As a consequence

a vacuum configuration can have any integer winding number and Chern-Simons number,

as long as they are equal NCS = Nw. Under gauge transformations NCS and Nw change

by the same amount, so that the difference Nw − NCS is gauge-invariant. The change in

time of NCS as defined by the integral over q in (2.8) is also gauge invariant.

In the following we briefly discuss two well-known configurations that can play a role

in changing the Chern-Simons and/or the winding number, namely the sphaleron and the

texture.

2.3 Sphaleron

A sphaleron transition is a change from a vacuum with winding numbers NCS = Nw = n,

to another vacuum with NCS = Nw = n ± 1. It has been shown [25, 26] that the system

must pass an energy barrier. The static and unstable configuration at the minimum barrier

height is called a sphaleron, and its energy is the sphaleron energy. This configuration has

vanishing Higgs length in the center, so that the winding number is not defined: it jumps by

an integer exactly at the transition. The Chern-Simons number of a sphaleron is precisely

1/2 (up to an integer).

The sphaleron energy Esph is proportional to v/g, and approximately 10 TeV. Be-

cause of this high energy-barrier, tunneling through the barrier (which corresponds to an

instanton-like event) is strongly suppressed. Therefore the baryon number is effectively

conserved at low temperatures. At higher temperatures the suppression is weaker because

of thermal fluctuations over the barrier. It is also useful to interpret this in terms of an ef-

fective temperature-dependent Higgs length 〈ρ〉 < v and an effective barrier height ∝ 〈ρ〉/g.

– 5 –
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Above the electroweak phase-transition temperature 〈ρ〉 vanishes and sphaleron transitions

occur unsuppressed. During a tachyonic electroweak transition there are also frequent fluc-

tuations over the barrier, as observed numerically in the susceptibility 〈N2
CS(t)〉 [18, 19].

2.4 Texture

Without gauge fields, a texture is a configuration with a nonzero winding number Nw, with

the Higgs length equal to the vacuum value everywhere, and with only gradient energy.

According to Derrick’s theorem [27] such a configuration is unstable because its energy can

be lowered indefinitely by shrinking it. Numerical simulations show that textures shrink

quickly, and it was argued in [24] that in the end the configuration looses its winding

number and decays into outgoing waves.

For the SU(2) Higgs model a natural extension of a texture is a gauged texture: a

configuration with Chern-Simons number different from the winding number: NCS−Nw =

±1. One can think of an initial configuration in which the gauge fields are pure-gauge with

integer Chern-Simons number and Higgs length equal to the vacuum value. Just as in the

global case, a gauged texture is unstable. There are basically two ways in which it can

decay [21, 22]: when its size is smaller than approximately 1/mW , it decays by changing

the winding number, and when it is larger it decays by changing the Chern-Simons number.

In either case NCS − Nw → 0 and the configuration can spread indefinitely into outgoing

waves.

2.5 Half-knot

Although the total winding number in a finite volume with periodic boundary conditions is

integer, in practice there is no reason to find local configurations with nearly integer winding

number or Chern-Simons number. This is because there is no mechanism that would

create such configurations, as there is, for example, energy minimization for monopoles.

Consequently the winding number density can be spread out over the volume. However as

we will argue below, there will be high winding number density regions where the Higgs

length is very small. The total winding number in such a region is typically not integer,

but close to 1/2, which is why we call these configurations half-knots.

One dimension. We illustrate this idea first in the simpler but analogous one dimen-

sional case with a complex scalar field Φ and global symmetry group U(1),

Φ =
1√
2

(φ1 + iφ2) =
ρ√
2

Ω, Ω ∈ U(1). (2.13)

The winding number density is (x ≡ x1)

nw = − i

2π
Ω∗∂xΩ =

1

2πρ2
(φ1∂xφ2 − φ2∂xφ1). (2.14)

In a coordinate patch were we can write Ω(x) = exp[iω(x) + const.] we also have nw =
1
2π ∂xω.

– 6 –
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Figure 1: Parametric plot of φ2(x) versus φ1(x) for x ∈ [−π, π], for the configuration of equa-

tion (2.15).

-3 -2 -1 1 2 3
x

0.5

1

1.5

2

2.5

3

3.5

Φ1
2 + Φ2

2

-3 -2 -1 1 2 3
x

0.5

1

1.5

2

2.5

3

3.5
nw

Figure 2: The Higgs length ρ2 and the winding number density nw for the configuration of equation

(2.15) as function of x.

In order to gain some intuition, let us consider the following simple form

φ1(x) = cos(x) − .95, φ2(x) = sin(x), (2.15)

for which the Higgs length ρ has a minimum when x is close to zero. This configuration

is shown in a parametric plot in figure 1. In this plot the Higgs length ρ is the distance

from the origin, and the change of phase corresponds to the ’winding’ of the curve around

the origin. When there is a small Higgs length, the phase changes quickly (in this case

approximately by an amount +π) and there is a high winding number density. We can see

this also in figure 2, where the Higgs length squared ρ2 and the winding number density are

plotted. We call such a region with small Higgs length and large winding number density

a half-knot. Note that the total winding number is integer (in this case +1), but that

– 7 –
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Figure 3: The Higgs length ρ2 (left) and the winding number density nw (right) for the configu-

ration (2.21), (2.22), as function of x and y, with z = 0.05.

only part of the winding number density is concentrated in a small region. The rest of is

distributed approximately homogeneously over the rest of space.

We can formalize the half-knot by approximating φ1 and φ2 locally (around x = 0) by

a linear form

φα = cα + dαx, α = 1, 2. (2.16)

This corresponds to approximating the circle near the origin by a straight line, and gives

nw =
1

2πρ2
(c1d2 − c2d1), (2.17)

ρ2 = cαcα + 2cαdαx + dαdαx2, (2.18)

and a contribution to the winding number

Npeak
w ≡

∫ ∞

−∞

dxnw =
1

2
sgn(c1d2 − c2d1) = ±1

2
. (2.19)

We have extended the integral to ±∞, but of course, the linear approximation breaks

down somewhere and the integral is to be interpreted as the contribution from a peak in

the winding density.

Three dimensions. In this subsection we introduce half-knots for the three dimensional

case. As in the one dimensional case we parametrize the Higgs field by real fields

Φ =
1√
2

(φ41 + iφaτ
a) , (2.20)

A simple example is a configuration that can locally be approximated by Fourier modes:

φα(x) = sin(x · kα − εα), α = 1, . . . , 4. (2.21)

The Higgs length
√

φαφα will be small near the origin if all the εα ¿ 1. In order to get a

local minimum and not a long streamline of small Higgs length, the vectors kα should span

three dimensional space. In figure 3 we plotted the Higgs length and the winding number

– 8 –
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density as a function of x = x1 and y = x2, in a slice through z = x3 = 0.05, for the case

k1 = (1, 0, 0), k2 = (0, 1, 0), k3 = (0, 0, 1), k4 = (0, 0, 1), ε1 = ε2 = ε3 = 0.1, ε4 = 0.

(2.22)

The integrated winding number in a box x, y, z ∈ [−0.5, 0.5] around the peak is found to

be 0.43, and it does not depend strongly on the integration volume.

The 3d half-knot may be formalized similar to the 1D case by using a linear approxi-

mation in a region where the Higgs length is small (on the scale of mH),

φα(x) = cα + dαkx
k. (2.23)

Then the winding number density is given by

nW =
1

12π2ρ4
εjklεαβγδ∂jφα∂kφβ∂lφγ φδ, (2.24)

and in the linear approximation this gives

nW =
1

2π2ρ4
det M, (2.25)

where M is the 4 × 4 matrix consisting of the column vectors dα1, dα2, dα3, cα,

detM = (1/6)εjkl εαβγδ dαj dβk dγl cδ . (2.26)

The integral over the winding density can be done by shifting coordinates, x → x′,

xk = x′k − gkldαl cα, (2.27)

where gkl is the inverse of fkl defined by

fkl = dαkdαl, gklflm = δk
m. (2.28)

In terms of the shifted coordinates we have

φα = c′α + dαkx′k, c′α = cα − dαkg
kldβlcβ , c′αdαk = 0, (2.29)

and the length of the Higgs field is given by

ρ2 = c′αc′α + fkl x
′kx′l. (2.30)

The winding number of the half-knot equals
∫

d3xnW =
1

2
sgn detM = ±1

2
. (2.31)

Since fkl is a positive matrix, the center (maximum winding-number density) of the half-

knot is at x′ = 0, and it has an ellipsoidal shape (surface of constant nw). Its energy

density has a constant contribution from the gradients, 1
2∂kφα∂kφα = 1

2dαkdαk, whereas

the contribution from 1
4λ(ρ2 − v2)2 drops off away from the center.

– 9 –
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When ρ vanishes in the center as a consequence of dynamics, so when the vector cα

vanishes, the winding number may or may not flip sign, depending on how the vector cα

recovers from zero. A pure-Higgs half-knot can decay by spreading. With a gauge field

present, the Chern-Simons number may adjust to the winding number locally, such that

the difference between winding and Chern-Simons number essentially vanishes.

Half-knots occur generically near the moment textures decay by changing their winding

number, or near sphaleron transitions, because at these moments the Higgs length vanishes

at a point. But half-knots are more general, for example, they occur in random field

configurations, e.g. initial conditions for classical evolution. It is not clear yet at this stage

that they are relevant, but in the simulations we will see that they are.

3. Winding in the tachyonic transition

In this section we discuss the evolution of winding number and Chern-Simons number in

a fast tachyonic transition. First we will review the relevant features of such a transition.

After that we will discuss the importance of half-knots and differentiate between early and

late half-knots.

3.1 Tachyonic transition

At the onset of the tachyonic transition, when the effective mass parameter µ2
eff of the Higgs

field changes sign, the universe is assumed to be in a homogeneous state with 〈Φ〉 ≈ 0. As

µ2
eff → −µ2, the Higgs potential becomes unstable near the origin and the low momentum

modes of Φ grow very fast. Since the couplings in the Standard Model are fairly weak,

it makes sense to study this process neglecting interactions. In this approximation the

Fourier modes of the Higgs field satisfy

Φ̈α(k, t) + [µ2
eff(t) + k2]Φα(k, t) = 0, (3.1)

which can be solved exactly for the initial stage where µ2
eff ≈ −M3t [28, 15] (choosing

t = 0 as the onset of the transition). It turns out that the unstable field modes, i.e. the

modes with k2 < −µ2
eff grow very fast; the number of unstable modes also grows when

−µ2
eff increases.

Interactions. An estimate for the moment that interactions set in is given by the time

that the average Higgs field reaches the point where the second derivative of the potential

vanishes. This is around mHt = 4.8, for an instantaneous quench and mH/mW =
√

2 [19].

There are both self-interactions of the Higgs field and interactions with the gauge field.

The self-interactions slow down the growth of the Higgs field, and eventually lead to an

oscillation near the vacuum state. The interactions with the gauge fields lead to a strong

growth of the gauge fields [17, 18]. The oscillation of the Higgs field is damped by the

interactions, and when more fields are added in a realistic situation, this suppression is

expected to be even stronger. Eventually the energy will be distributed over all modes,

and the system thermalizes.

– 10 –
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Instantaneous quench. As in [16, 17, 19], we make in this paper the approximation

that the change of the potential is instantaneous in order to obtain the most dramatic

effects,

µ2
eff(t) = +µ2, t < 0,

= −µ2, t > 0. (3.2)

Moreover we do not consider the inflaton field in our simulations. In this quenching approxi-

mation the modes of the Higgs field grow exponentially fast, Φα(k, t) ∝ exp[
√

µ2 − k2 t] [16,

19].

Classical approximation. Another approximation that we use is the classical approx-

imation. Intuitively one can see that the fields can be considered to be classical, because

the Bose fields grow exponentially fast and the occupation numbers are therefore quickly

much larger than one. For the gauge field the occupation numbers become substantial

only after the Higgs current in its equation of motion has grown sufficiently large, which

typically takes a few m−1
H units of time [17]. The approximation is implemented as follows

[16, 19]. Before the instantaneous quench the fields are in the zero-temperature ground

state corresponding to positive µ2
eff = µ2. Neglecting interactions this corresponds to a

gaussian distribution, which can be followed until it becomes classical and a switch to

classical evolution can be made. However, because quantum and classical evolution are

formally the same for gaussian systems, this switch can already be made at time zero,

directly after the quench. The classical evolution is computed from the fully non-linear

equations of motion, including the interactions. Making the switch early on also enables

a more gradual inclusion of the effect of the interactions. We draw a number of Higgs

field configurations from the classical part of the gaussian distribution, and take these

configurations as initial conditions for the system after the quench. For simplicity, the

initial gauge potentials are set to zero, whereas the SU(2) electric fields are calculated

from Gauss’ law [19]. Then we evolve each of these configurations according to the classi-

cal equations of motion. In the end we compute expectation values by averaging over the

initial distribution.

The classical approximation for a tachyonic transition has been compared with quan-

tum methods like the 2PI-method in [29], and it turned out that the two approximations

agreed for the times and couplings used here, giving further support for both.

3.2 Winding and Chern-Simons number densities

In the initial conditions for the tachyonic transition the gauge fields are negligible, and since

the gauge potentials are zero in our implementation, the Chern-Simons number density is

zero. The Higgs field initially has fluctuations around zero, and therefore it has nonzero

winding number density. Since the initial conditions are random, the winding number

density will be randomly distributed over the volume. The total winding number in the

volume will be integer, and does not have to be zero.
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When the system thermalizes and the temperature decreases, the Chern-Simons num-

ber will approach the winding number. If the winding number would not change during

the process, the Chern-Simons number, approaching the initial winding number, would be

determined by the initial conditions, and CP violating interactions could not influence the

final outcome.

In reality the winding number does change during the process, and this makes it

possible that CP violation creates an asymmetry. The winding number can change when

the Higgs length becomes zero in a point, and as we argued in the previous section there

will be half-knots around such points. There are two periods when the Higgs has a chance

to be small and change of winding is likely to occur: early in the transition when the Higgs

field starts from a small fluctuation, and later on, when the Higgs length bounces back due

to its self-interaction, or just any interactions, e.g. scattering of non-linear waves.

In both periods half-knots will occur; we call them early and late half-knots respec-

tively.

3.3 Early half-knots

In the initial conditions of the tachyonic transition, the Higgs field has small fluctuations

around zero. The number density of minima of the Higgs length is, depending on the

initial conditions, roughly proportional to k3
max where kmax is the largest wavenumber that

is initialized. Because of the peculiar feature of the tachyonic transition that modes grow

faster as their wavelengths are larger, this number density of minima will quickly decrease.

Hence initially there are many half-knots, but their number quickly decreases.

Some half-knots will manage to survive longer. When a half-knot still exists when the

gauge fields start to become important, the Chern-Simons number density in these regions

can adjust to the winding number density. When the Chern-Simons number becomes

approximately equal to the winding number in a blob, the covariant derivative DiΦ becomes

small, the gradient energy diminishes and the half-knot becomes stable.

The early half-knots are perhaps not so important for baryogenesis. In principle CP

violation could cause an imbalance in the formation and decay of the number of half-

knots and anti-half-knots. However in this early period there are no interactions yet, and

CP violation cannot have acted. Also when the early half-knots stabilize and survive CP

violation is not important because then the winding number does not change. So we expect

for possible effects of CP violation, we should look at the late half-knots.

3.4 Late half-knots

The Higgs length can also become small later in the transition. For example this can happen

when the Higgs field bounces back in its potential, or because of interactions in general. In

this case there will be late half-knots in which the winding can change. Because interactions

are important to create these half-knots, also CP violating interactions can influence this

process. There may also be longer lived half-knots, not stabilized by the gauge fields, whose

probability to decay is influenced by the stronger CP violation at later times.
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4. Numerical simulations

In this section we first describe briefly the setup of our simulations, and then present the

results.

4.1 Setup

In [19] numerical simulations were described with the SU(2) Higgs model, using the ap-

proximations described in section 3.1, and with an extra CP violating term in the action.

For the present work we extended the computer code of [19] to be able to observe the

winding-number density and a local quantity nCS closely related to the Chern-Simons

number density (see below). We do not use the CP violation of the code of [19] because

at this point we are interested in the mechanism of winding number and Chern-Simons

number production, and not yet in the creation of the asymmetry.

The simulation was performed on a 603 lattice, with periodic boundary conditions and

with a lattice spacing of 0.35 m−1
H , such that the physical volume was L3 = (21m−1

H )3.

The initial conditions mentioned in 3.1 are the “just-a-half” initial conditions as defined

in [16, 19]. Effectively this means that only the growing modes, with momentum k smaller

than µ, are initialized with probability given by the vacuum state. Furthermore we took

λ/g2 = 1/4, which is equivalent to mH/mW =
√

2. (We shall also present some results for

mH/mW = 2.) For the determination of the initial conditions, which are set by quantum

fluctuations, we also have to fix g2. We chose g2 = 4/9. See [19] for more details on the

numerical implementation.

The density nCS is defined as

nCS(x, t) =

∫ t

0
dt′ q(x, t′), (4.1)

where q is the gauge-invariant topological charge density given in (2.7). Since q = ∂µjµ
CS

and the Chern-Simons current is zero for our initial conditions,

nCS(x, t) = j0
CS(x, t) + ∂k

∫ t

0
dt′ jk

CS(x, t′). (4.2)

So nCS differs from j0
CS by a divergence and they both integrate to NCS. In the following

we shall call nCS the Chern-Simons density, for simplicity, but it should be kept in mind

that it is not equal to j0
CS.

4.2 Results

4.2.1 One typical trajectory

In order to investigate classical field configurations we look at single trajectories. In this

subsection we consider one typical trajectory.

Total Nw and NCS as function of time in typical run. The variables considered

in [19] were the spatial average of the Higgs length squared

ρ2 = L−3

∫

d3x ρ2, (4.3)
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Figure 4: Results of a typical run for times mHt = 0 to mHt = 30. Plotted are ρ2/v2, the total

winding number Nw and total Chern-Simons number NCS.

the winding number Nw and the Chern-Simons number NCS. In figure 4 we show the

evolution of these variables in time for our typical trajectory, from mHt = 0 up to mHt = 30.

The winding number Nw fluctuates initially, and later stays put at an integer. The initial

fluctuations indicate that there must be zeroes in the Higgs length. In the continuum

these fluctuations would be between integers (a ‘devil’s staircase’), but here they appear

as smoothed out by the lattice discretization.

We also see that the Chern-Simons number starts only when the average Higgs length

is already rather large, and that at the later times NCS ≈ Nw. (Occasionally we also have

seen trajectories for which the two differed at mHt = 30 by a number of order 1, and only

at much later times NCS approached Nw (sometimes this took as long as mHt ≈ 500).

3D pictures of nw and nCS. Next we look at the densities of the winding number and

Chern-Simons number in this trajectory. Figure 5 displays the winding number density in

the three dimensional simulation volume from times mHt = 1 to mHt = 15. Note that the

box has periodic boundary conditions. Red (dark) indicates positive density, blue (light)

negative. In the beginning there are many ’blobs’ in winding number density. We will

argue below for two specific cases that these blobs are half-knots with a small Higgs length

ρ in their center. Sometimes they change sign. The number of blobs decreases first until

approximately time mHt = 9, then it increases until approximately mHt = 13 after which it

decreases again. Some of the early blobs that are there already from the beginning survive

all the time. The blobs that appear after time mHt = 9 seem to be uncorrelated to the

blobs that were there before. We call these new blobs the late blobs.

In figure 6 the Chern-Simons number density is shown from times mHt = 7 to mHt =

15. Before mHt = 7 the Chern-Simons number density is negligibly small. Also in the
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Figure 5: Winding number density nw from mHt = 1 to mHt = 15. Red (dark) is positive, blue

(light) is negative.

Chern-Simons number density there are blobs. These blobs are correlated with the winding

number blobs.

Small Higgs length means a lot of winding. We argued above that regions with

small Higgs length have typically a large winding number density. This is confirmed in the

simulations. In figure 7 the absolute value of the winding number density |nw| is plotted

versus the normalized Higgs length (ρ/v)2 for each point on the lattice. The configuration of

the typical trajectory at time mHt = 6 is used, when the gauge fields are still unimportant.
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Figure 6: Chern-Simons number density nCS from mHt = 7 to mHt = 15. Before mHt = 7 the

Chern-Simons number density is negligibly small. Red (dark) is positive, blue (light) is negative.

Figure 7: The absolute value of the winding number density |nw| versus the Higgs length for all

lattice points in the simulation volume, at time mHt = 6.

We see that |nw| and (ρ/v)2 are correlated such that, when the Higgs length on a lattice

point is small, the winding number density is typically large.
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Figure 8: The integral
∫

d3x |nw| and the spatial average of the squared Higgs length versus mHt.
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Figure 9: Histograms that display the distribution of the Higgs length on the lattice at times

mHt = 8, 12 and 20.

A consequence of this correlation is that when the average Higgs length is small, there

will typically be more winding blobs. We saw this already in the three dimensional pictures

of the winding number density: there were less winding blobs around time mHt = 8, when

the average Higgs length is large. We can show this more quantitatively, by plotting [30]
∫

d3x |nw| in figure 8. We see in this figure that the peak in
∫

d3x |nw| at mHt ≈ 20 is

much smaller than the corresponding one at mHt ≈ 12. This agrees with the fact that
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Figure 10: The correlation C(r, t) between nCS and nw, defined in (4.4), versus r = |r| at various

times.

there are much less lattice points with small Higgs length at mHt = 20. We can also see

this from the histograms in figure 9. We call the blobs that are created in minima of the

Higgs length, second (third, . . . ) generation blobs.

Correlation between winding number and Chern-Simons number. Because the

Higgs and gauge fields interact, nw and nCS are correlated. This could already be seen in

the three dimensional pictures, but we can also calculate the correlation

C(r, t) =

∫

d3x [nCS(x, t) − nCS(t)][nw(x + r, t) − nw(t)]
√

∫

d3x [nCS(x, t) − nCS(t)]2
√

∫

d3y [nw(y, t) − nw(t)]2
, (4.4)

where the ‘over-bar’ denotes the spatial average, as in (4.3). This correlator is plotted

versus r = |r| at various times in figure 10. It shows a spatial correlation developing on

distances of order m−1
H , modulated in time and showing a tendency to diminish at later

times.

It is also instructive to plot its value at r = 0 versus time, see figure 11. We see that

the correlation C(0, t) develops already at early times, it peaks at times mHt ≈ 12 and 16,

and there is a rapid drop after the first peak. This drop occurs when the average Higgs

length has become small after its first maximum, and
∫

d3x |nw| is on the rise again (cf.

figure 7). We interpret this as being caused by the creation of many new winding blobs

when the Higgs length is small again, half-knots that are uncorrelated with the nCS. When

C(0, t) peaks for a second time the average Higgs length is large again and
∫

d3x |nw| is low.

We suspect that this is because the winding blobs that still exist when the average Higgs

length is large, exist already for some time and the Chern-Simons number density has had

some time to adjust. Later on the correlation decreases, which is presumably caused by

random fluctuations.

In the following two subsections we zoom in on two blobs, first on an early blob and

then on a late survivor.

4.2.2 Early blob

For the early blob we take the one indicated by the arrow in figure 12. Let us first look
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Figure 11: The correlation C(0, t) versus time.

Figure 12: The winding number density at time mHt = 1 of the same run as used before. The

blob that we consider in this section is indicated by the arrow.
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Figure 13: Left the Higgs length (vertical) at time mHt = 2 is plotted at the position of the blob,

as function of the x and z coordinates (a vertical slice). Right the winding number density at time

mHt = 2 is plotted for the same slice through the blob.
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Figure 14: Left: Nball
w , Nball

CS and ρ2
ball

, for a ball with a radius of 6 lattice units (2.1 m−1
H )

around the center of the blob. Right: excess energy, [
∫

ball
d3x (ε − ε)]/Esph, in the same ball and

its contributions from the Higgs field and the gauge fields.

at the distributions of the Higgs length and the winding number density in this blob. In a

vertical slice in the xz-directions through the center of the blob, the Higgs length and the

winding number density are plotted in figure 13, at time mHt = 2. The Higgs length has a

minimum and the winding number has a large peak at this minimum. These figures look

very similar to the analytical example in figure 3.

Next we have calculated the sums of some quantities in a ball around the center of the

blob. For this we had to determine the position of the center, which is slightly ambiguous.

We did it by defining the center as the point where the winding number density is maximal.

The position of the center can change a bit at different times, so we determined the center

at each time step. In the left panel of figure 14 we show the integrated winding number

density

Nball
w =

∫

ball
d3xnw, (4.5)
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integrated Chern-Simons number density

Nball
CS =

∫

ball
d3xnCS, (4.6)

and the volume-averaged Higgs length

ρ2
ball

=

∫

ball
d3x ρ2

/

∫

ball
d3x 1, (4.7)

for a ball of radius 6 lattice units, corresponding to 2.1 m−1
H , as a function of time. For

reference the Higgs length averaged over the full simulation volume is also shown.

The winding number in the ball first decreases until mHt = 5, then increases until

mHt = 10 and afterwards stays approximately constant near a value of 0.3. The Chern-

Simons number becomes visible from mHt ≈ 8 onwards, has a small peak and stays constant

near 0.2 after mHt ≈ 13. The winding number and Chern-Simons number end up being

close to each other. The average Higgs length in the ball grows only much later than

the one in the full volume, and also oscillates with a somewhat higher frequency. It also

exhibits much less damping, which is suggestive of oscillons [31, 32].2 We will comment

later on the dip in the winding number at time mHt = 5.

The right panel of figure 14 shows the energy in the same ball with radius 2.1 m−1
H .

We display the excess energy above the average energy relative to the sphaleron energy, i.e.
∫

ball d
3x (ε− ε)/Esph, where ε is the energy density and ε its average over the total volume.

The average energy density is simply that of the origin of the Higgs potential, ε = m4
H/16λ,

and the sphaleron energy for mH =
√

2 mW is Esp ≈ 3.78 (4πmW /g2) (see e.g. [33]), and

so
∫

ball d
3x ε/Esp ≈ 0.29. Hence, the sphaleron energy in this plot is at 0.71.

We show the total energy in the ball as well as its contributions from the Higgs and

the gauge fields (the contribution from the covariant derivative is allocated to the Higgs

fields). We see that the gauge fields contribute most to the energy. It is remarkable that

the peak in the total energy occurs at a time where the average Higgs length in the ball

has its first maximum, that the peak is significantly higher than the sphaleron energy, and

that the energy has already fallen back to the average already shortly after mHt = 15.

Evidently, a strong energy flow into and out of the ball is taking place. At the later times

Nball
CS has roughly the same value as Nball

w .

To see how these results depend on the radius of the ball we show in figure 15 the

winding number and Chern-Simons number in balls with increasing radii, from 3 up to 15

lattice units. They clearly depend on the radius, and for the larger balls Nball
w increases

above 1/2. This may be caused by another blob of the same sign that is close (cf. figure 5,

e.g. at time mHt = 15 the distance between the centers of the two blobs is about 13 lattice

units).

Here we return to the dip that we observed at mHt = 5 in figure 14. From figure 15

we see that the dip is also there for larger radii of the ball; apparently the winding number

2The Higgs mode of the ideal oscillon found [32] for mH = 2 mW oscillates at a slightly lower frequency

than mH/2π but in our case the effective Higgs mass will be lowered by a non-zero effective temperature

in the bulk.
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Figure 15: Nball
w (left) and Nball

CS (right) for balls with varying radii, increasing from 3 lattice

distances up to 15 lattice distances.
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Figure 16: Profiles of the normalized Higgs length ρ2(r)/v2 for times mHt = 1 to mHt = 10. On

the horizontal axis is the distance from the center, r, in lattice units (0.35 m−1
H ).

is not flowing out of the ball, but is really decreasing. In the continuum this can only

occur when the Higgs length ρ is exactly zero somewhere. But on the lattice the we will

miss already a significant amount of winding number when the spatial size of the winding

number peak becomes smaller than a lattice unit. Hence we interpret the observed dip as

a lattice artefact, signaling a half-knot in the center of which the Higgs length decreases

(which makes the peak sharper) until mHt = 5, and increases again after that.

Further insight can be obtained from the profiles of the Higgs length and the winding-

number density around the center of the blob, ρ(r) and nw(r). They are plotted in figures

16 and 17, for times mHt = 1 to 10. The profiles are determined by averaging at fixed

distances r from the center over all directions. For the position of the center we used the

same values as in figure 14.
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Figure 17: As in figure 16 for nw(r) for times mHt = 1 to mHt = 5 (left) and until mHt = 10

(right).

From the Higgs length profiles we see that, while the Higgs length in the bulk grows

steadily from the beginning, in the center of the blob it remains very small up to time

mHt ≈ 6, and starts to grow only after that. At the latest time ρ(r) looks like an oscillation

about the equilibrium value ≈ v. The winding number density profile is already well defined

at time mHt = 1. It then shrinks and becomes steeper towards the center, mHt = 2 and 3.

This shrinking and steepening appears to get blurred by lattice artefacts at mHt = 4, 5, 6

(note that the profiles here are shown on a much smaller scale than the ρ-profile in figure

16), and as mentioned earlier, we believe this is the reason for the dip in Nball
w at mHt = 5.

From time mHt = 10 the winding number profile broadens.

We conclude that we have witnessed the formation of a half-knot, that nearly decayed

by shrinking, but got ‘saved’ by the gauge field adjusting its Chern-Simons number density

and diminishing the Higgs gradient density |DiΦ|2. Remarkably, this adjustment goes

together with a big jump in gauge-field energy. At later times the well-dressed blob carries

no excess energy, and the process has led to a local change in the total Chern-Simons

number.

4.2.3 Late transition

Above we have seen (in the three dimensional pictures 5, 6 and the |nw| graph 8) that

new blobs are created when the average Higgs length is small. Sometimes the winding

number Nw changes in such a blob. Here we present an example of such a late blob in

which the winding number changes. It comes from another trajectory than the one used

before. Figure 18 shows the evolution of ρ2, Nw and NCS in this run up to time mHt = 30.

Note that the winding number changes from −1 to 0 between mHt = 23 and mHt = 24.

This change takes place in the blob that we are going to consider.

Figure 19 shows 3D plots of the winding and Chern-Simons number densities at times

mHt = 23 and 24. The change of the winding number occurs in the blob that changes

sign at the top of the box. At the same position there is a positive Chern-Simons number

density both before and after the change of winding number.
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Figure 18: The analog of figure 4 for the trajectory with a late transition, ρ2/v2, total winding

number Nw and total Chern-Simons number NCS.

In figure 20 the Higgs length and the winding number density in a horizontal slice

through the blob are shown for times mHt = 23 and mHt = 24. There is a pronounced

minimum in the Higgs length at the place of the peak in the winding number density. The

latter changes quite abruptly from negative to positive.

Next we plot Nball
w , Nball

CS and ρ2
ball

for a ball of radius 6 in lattice units (2.1m−1
H )

as a function time in the left panel of figure 21. The average Higgs length in the ball is

approximately in anti-phase with the average Higgs length in the full volume, and there

appears to be no damping, suggesting as in figure 14 a connection with the oscillon phe-

nomenon [31, 32]. The winding number flips sign around mHt = 2 and becomes negative.

Then it makes limited excursions, even at the times where there are large peaks in ρ2
ball

,

but between times mHt = 23 and mHt = 24 it makes a rapid jump by about +0.6, a

substantial part of 1 for this relatively small ball. At this point ρ2
ball

has a minimum. The

Chern-Simons number of the ball does not follow the winding number very much. It shows

mild negative peaks at mHt = 9 and 18, shortly before the peaks in ρ2
ball

, and between

mHt = 18 and 30 it gradually increases by about 0.6 (about the same as the jump in Nball
w

at mHt = 23. In the right panel of figure 21 the total energy in the ball and the contri-

butions from the gauge and the Higgs fields are plotted versus time. As in figure 14, we

display the excess energy above the average, and with respect to the sphaleron energy. The

contribution from the gauge fields is again dominant in the first two peaks (which coincide

with the peaks in ρ2
ball

), but at mHt = 23 (where ρ2
ball

has a minimum) the Higgs energy

clearly dominates. There is a moderate rise of the energy between mHt = 22 and 27. Given

that the subtracted energy is about 0.29 Esp, its maximum value is about 15% higher than

the sphaleron energy. The Nball
w and Nball

CS data for balls with increasing radii are given in
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Figure 19: 3D plot for the winding number-density (upper two figures) and Chern-Simons number-

density (lower two figures) at times mHt = 23 (left) and mHt = 24 (right).

figure 22. The result is comparable to the early blob: both the winding number and the

Chern-Simons number increase with increasing radius, indicating that there is not a sharp

boundary of the blob. However, the sharp rise in Nball
w between mHt = 23 and 24, and the

steady increase of Nball
CS after mHt = 18, are present for all ball radii.

Figures 23 and 24 show the profiles of the Higgs length and the winding number

density, from times mHt = 19 to mHt = 27. The Higgs length at the center is decreasing

and apparently developing a zero at time mHt = 23, when the winding number changes,

and after that it increases again. The winding profile becomes very steep around this time,

as we saw also in figure 20. Lattice artefacts do not seem to be prominent in this case.

Afterwards the winding density spreads and becomes very small.

The transition at mHt = 23 bears the hallmarks of a sphaleron transition: a gradual

O(1) increase in NCS and an O(1) jump in Nw, which occur locally in a blob, in the center

of which ρ goes through zero, together with a gradual increase in Nbal
CS and a switch of sign

in Nball
w . The energy at that time in the ball of radius 2.1m−1

H (1.5m−1
W ) is also reasonably

close to the sphaleron value (≈ 0.9Esp). The properties of the subsequent maximum at

mHt = 27 look rather similar to the two earlier ones, in its dominance of the gauge-field

energy and the accompanying maxima in ρ2
ball

.
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Figure 20: Upper plots: Higgs length as function of the x and z coordinates through the blob.

Left is at time mHt = 23, right at time mHt = 24. Lower plots: the corresponding winding number

density.
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Figure 21: The analogue of figure 14: Left: Nball
w , Nball

CS and ρ2
ball

, for a ball with a radius of 6

lattice units (2.1 m−1
H ) around the center of the blob. Right: excess energy, [

∫

ball
d3x (ε − ε)]/Esph,

in the same ball and its contributions from the Higgs field and the gauge fields.

4.3 Distributions and susceptibilities

Here we present some quantitative results for the late distribution of winding numbers,

and for the growth of the Chern-Simons susceptibility 〈N2
CS〉 during the transition. The
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Figure 22: The analog of figure 15: Nball
w (left) and Nball

CS (right) for balls with varying radii,

increasing from 3 to 15 lattice units.
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Figure 23: Profiles of the normalized Higgs length ρ2(r)/v2 for times mHt = 19 to mHt = 23 (left)

and to mHt = 27 (right). On the horizontal axis is the distance from the center r in lattice units

(0.35 m−1
H ).
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Figure 24: As in figure 23 for nw(r).

winding-number distribution is expected to be gaussian for large volumes, but its volume

dependence may contain non-trivial deviations. The rate of change of the Chern-Simons
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Figure 25: Normalized distribution of winding numbers at mHt = 30 for mH =
√

2 mW and

mH = 2 mW .

susceptibility has been interpreted as an effective sphaleron rate and used [18] to estimate

the asymmetry induced by CP violation. In this section we also show results for mass ratio

mH = 2mW , in addition to the value mH =
√

2 mW used throughout this article. We vary

mH/mW by varying the Higgs self coupling λ while keeping fixed the gauge coupling g2,

the volume in Higgs mass units, (mHL)3, and the lattice spacing in Higgs mass units, amH.

4.3.1 Winding distribution

Figure 25 shows the normalized distribution of winding numbers at mHt = 50 obtained from

a sample of about 2000 initial conditions for each parameter set. Four fits to the data are
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shown as well, one based on a gaussian and three models based on a generation via winding

blobs. In a first approximation we treat such blobs as being dilute and independent, which

means that in a sufficiently large volume the probability for n blobs is pn = crn/n!, where

c is a normalization constant following from
∑

n pn = 1. For n = 1, 2, . . . this gives c = e−r,

and r is the average number of blobs, which is proportional to the volume.

From a Kibble mechanism viewpoint one might expect each blob to contribute one

unit to the winding number. For n blobs there may be k blobs contributing +1 and n− k

blobs contributing −1, such that the winding number is N = k(+1)+(n−k)(−1) = 2k−n.

Assuming a probability a for +1 and (1 − a) for −1, the probability for winding number

N would be given by

PN =

∞
∑

n=0

pn

n
∑

k=0

(

n

k

)

δ2k−n,N ak(1 − a)n−k = e−r

(

a

1 − a

)N/2

IN (2r
√

a(1 − a)), (4.8)

where IN is the usual Bessel function. In our case of no CP violation, a = 1/2, and

P
(1)
N (r) = e−rIN (r). (4.9)

For r À 1 this becomes indistinguishable from a gaussian,

P gauss
N (σ) =

1√
2πσ2

e−N2/2σ2

, (4.10)

with σ ≈ r.

However, we have argued and presented evidence that in a tachyonic quench the initial

winding blobs are half-knots, some of which become stabilized by the gauge field and pick

up a Chern-Simons number equal to their winding number ±1/2. So their initial winding

number is conserved, although they later decay by spreading. This suggest that we modify

the above model by taking into account the half integer winding of the blobs. Since the

total winding number is integer, we could modify the above reasoning by assuming that in

case n is odd, there is a compensating contribution ±1/2 somewhere in the volume, writing

N = k(+1/2)+(n−k)(−1/2)±1/2, with equal probability 1/2 for the ± sign. The even-n

contribution to PN is unmodified. This gives

P
(1/2)
N (r) = e−r

[

I2N (r) +
1

2
I2N+1(r) +

1

2
I2N−1(r)

]

. (4.11)

Alternatively, we can model the compensating ±1/2 contribution by a half-knot and only

allow even n, such that pn → rn/n! cosh r, which leads to the simpler form

P
′(1/2)
N (r) = I2N (r)/ cosh(r). (4.12)

The distributions PN are normalized,
∑∞

N=−∞ PN = 1.

The χ2 values of the fit presented in the upper plot of figure 25 for the half-knot based

model of equation (4.12) is clearly lower than the integer model and also the gaussian

model. For the model of equation (4.11) the result is comparable. For the lower plot the

integer-knot model gives a better fit but the difference with the half-knot model is not

significant (χ2/ d.o.f. = 1.3 vs. 1.1). This we consider additional support for the relevance

of half-knots in the tachyonic transition.
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Figure 26: Chern-Simons susceptibility 〈N2
CS(t)〉 for mH =

√
2mW and mH = 2 mW .

4.3.2 Chern-Simons susceptibility

Figure 26 shows the time dependence of 〈N2
CS〉 for the mass ratios mH/mW =

√
2 and 2.

Both curves show an initial rapid rise, and the
√

2 case shows a deep dip near mHt = 13.

This is about the time where the average Higgs length also has its first minimum (actually

approximately one m−1
H unit later) . At this time

∫

d3x |nw| has risen again substantially

(figure 8), and there is evidently no instantaneous connection with the winding number.

The dip is much less pronounced (and shifted) for mass-ratio 2 case, presumably due to

the stronger coupling λ, which implies a smaller initial energy density (m4
H/16λ). We have

seen that the dip in the average Higgs length is also less deep in this case. This suggests

fewer second-generation winding blobs, which may explain the quicker flattening of 〈N2
CS〉,

compared to the
√

2 case. Correspondingly, the effective sphaleron rate d〈N2
CS〉/dt (e.g.

averaged over an oscillation) will be substantial over a larger time span when mH/mW

decreases.

An alternative interpretation for the first minimum in the susceptibility could be given

in terms of NCS bouncing back from a barrier in the potential of its effective equation of

motion. The ρ-dependence of this barrier may even lead to resonant behavior [16, 19].

5. Summary and discussion

In the theory of baryogenesis the change of the Chern-Simons number of the SU(2) gauge

field plays an important role, and we studied the mechanism by which this can occur in

a tachyonic electroweak transition. The tachyonic instability occurs initially in the Higgs

field, and because of its coupling to the gauge field through the covariant derivative, one

expects a correlation between the Chern-Simons number and the Higgs winding number.

We argued that in a tachyonic transition there will be many places where the Higgs length
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is small in a typical field configuration. These places are important, since the winding

number can change when the Higgs length goes through zero, possibly under influence of

CP violation, and this may also induce a change in the Chern-Simons number. On the other

hand, small Higgs lengths imply small Higgs currents, which may limit their influence in

the equation of motion of the gauge field. Regions with small Higgs length have in general

a large winding-number density, which is why we call them winding blobs.

The integrated winding number in these blobs does not need to be integer, and the

basic objects have winding number close to ±1/2, the half-knots. When the dynamics

causes the Higgs length to vanish in the center of a half-knot, its winding number may

flip sign. Half-knot configurations occur also naturally during sphaleron transitions, and

decaying textures loosing their winding number, since these have a moment at which the

Higgs length vanishes at a point in space. The pure-Higgs half-knots can evaporate by

increasing the Higgs length in the center, but they may also get ‘dressed’ by the gauge

field adjusting its Chern-Simons number density locally to the winding. The configuration

may then decay by spreading into the environmental fluctuations, and the half-knots have

acted like local seeds of Chern-Simons number change.

We observed the winding blobs in numerical simulations of the tachyonic transition

in the SU(2) Higgs model. Because of their large winding number density, they are easy

to spot. We indeed observed a strong correlation between the half-knot winding density

with the Chern-Simons number density.3 The picture sketched above was supported by

the behavior of the integrated winding and Chern-Simons densities in small balls, as well

as the radial profiles of the spherically averaged densities. Our findings for the profiles are

similar to the one shown in [18].

We also analyzed an example of a realistic sphaleron transition. This occurred quite

late in a blob that survived a relatively long time, showing signs of stability reminiscent

of oscillons [31, 32]. In the present case we do not expect such objects to live very long as

they will be destroyed by thermal fluctuations.

We found that the winding blobs can be divided into two classes. The early blobs are

remnants from the initial conditions, and can sometimes survive when they are stabilized

by the gauge fields. The late blobs occur when the Higgs length bounces back to small

values, and there can be second, third, . . . , generations, especially for smaller Higgs self-

couplings. Most of the early blobs are probably not important for CP violation, because

interactions become important too late for them. CP violation can however affect the late

blobs.

The distribution of Chern-Simons numbers is expected to be approached by the dis-

tribution of winding numbers when the volume becomes large. We studied the winding-

number distribution and found that it could be fitted by models based on half-knots,

better than by a model based on integer components and even marginally better than a

gaussian, although for large volumes all the model-distributions are expected to become

indistinguishable from a gaussian.

3We recall that in our numerical simulation we actually used nCS, which is a gauge-invariant modification

of j0

CS with the same total Chern-Simons number.
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Finally we presented new results on the susceptibility of Chern-Simons numbers, which

has been used in estimates of the baryon asymmetry [18]. Some aspects of its dependence

on the Higgs self-coupling could be interpreted in terms of generations of half-knots, but a

detailed understanding is difficult. Nevertheless, we expect that the increased understand-

ing obtained in this paper is of use for modeling cold electroweak baryogenesis.
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